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Outline

In this presentation, we will go over the basics of what an outlier is
in linear regression and then apply what we have learned there in
developing a modern algorithm for a basic problem. A list of
topics, I aim to go over:

▶ Simple linear regression model and Gaussian least squares
▶ What is an anomaly in simple linear regression and why it is

important?
▶ Logistic regression model and logits, ’odds’, function and how

it effects outliers
▶ Talk about a regression model whose aim is to predict itself

and why it is useful in understanding anomalies.



What is an Anomaly?
Before we begin, it is important to clear up what we mean by an
anomaly. The definition may be a little involved, but simply
anomalies are points that do not conform to a well-defined notion
of normal behaviour.(Chandola et al.,2009)

Figure 1: (Tripathi, 2020)



Simple Linear Regression

We can summarize the regression model as:

𝔼(𝑌 |𝑋 = 𝑥) = 𝛽0 + 𝛽1𝑥
𝑣𝑎𝑟(𝑌 |𝑋 = 𝑥) = 𝜎2

and under some assumptions about the difference between actual
and expected values of y. We will begin with an example to help
clarify.
Let’s suppose we are given the task ascertaining the nature of the
relationship between the advertising spending and sales of a
company. Our model is:

𝐺𝑟𝑜𝑠𝑠 𝑠𝑎𝑙𝑒𝑠(𝑌 ) = 𝛽0 + 𝛽1 × 𝐴𝑑𝑣𝑒𝑟𝑡𝑖𝑠𝑖𝑛𝑔 𝑜𝑢𝑡𝑙𝑎𝑦(𝑋) + 𝜖



Sales Data
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Regression Continued

So far we have our data, and we have a model but we do not yet
have a way to calculate the ‘best’ 𝛽0 and 𝛽1 values. For that end
we will try to minimise the distance between an observed value 𝑌𝑖
and the predicted 𝔼(𝑌 |𝑋 = 𝑥𝑖), sometimes shown as ̂𝑌 .
Thus, minimize (𝑌 − 𝔼(𝑌 |𝑋 = 𝑥))2:
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Regression Continued
Let’s see how this works in our example:
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Regression Errors
We may learn a lot about the success of our model by looking at
the errors, this will be a key when dealing with anomalies.
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Outliers

Let’s add an extra point to our data, which is intended to be an
outlier:
Outl_Data<-Data_1%>%

add_row(.,Year=1996,
Advertising_outlay=3,
Gross_sales=13.4,
.before=1)

Outl_Model<-Outl_Data%>%
glm(Gross_sales~Advertising_outlay,

family=gaussian,.,)



Regression Plot ..again
Looks like our new point does not quite fit in.
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Residual Plot with the outlier
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Outlier Detection
How can we qualify our new point as an outlier, or can we give a
measure of how much of an outlier a given point is? In a linear
regression model, it depends on the errors which are expected to
be normally distributed with variance 𝜎2. Using this information
we may create confidence intervals around each 𝔼(𝑌 |𝑋 = 𝑥𝑖) with
variance 𝜎2, which may help us quantify how much of an anomaly
a point is based on the smallest confidence interval it fits. Note
that this approach assumes that our model is a reasonable
representation of our data.

Figure 2: (Nguyen, 2009)



Confidence Intervals
Here is our 95% confidence intervals plot:
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So far..
In this past example we have looked into our data, fitted with an
appropriate model and claimed that the minority of points, in our
case it was just the one, that disagree greatly with our model are
outliers. Bear in mind that this does not always suggest that these
points are unimportant, or that they should be removed. We have
the make our decisions on a case-by-case basis, for example the
outlier point we have added corresponded to a greater number in
sales by less spending on advertising, which may be of great
interest!

Now we will move on to a classification task in which our
dependant variable is binary.

𝑌 = {1 if the outcome is a success
0 if the outcome is a failure

, with ℙ(𝑌 = 1) = 𝜋 and ℙ(𝑌 = 0) = 1 − 𝜋.



Logistic Regression

In order to adapt to a classification task, we need to change our
model a little bit. In particular we need to make sure our
predictions lie within (0, 1) to correspond to a probability of
success/failure.

𝑌 = 𝑔(𝛽0 + 𝛽1𝑋)
where 𝑔 would link our 𝑋’s to 𝑌 ’s.



What should our link function be?

It is plausible to try the model the odds of success,
i.e. ℙ(𝑌 =1)

ℙ(𝑌 =0) = 𝜋
1−𝜋 this way we can guess a failure when 𝑜𝑑𝑑𝑠 < 1

and a success when 𝑜𝑑𝑑𝑠 > 1. However, this goes against our
initial instinct of making our prediction lie within (0, 1). One easy
solution is to take logarithmic scale:

log( 𝜋
1 − 𝜋) = 𝛽0 + 𝛽1𝑋.

This gives us the logit link function. Taking an inverse of the logit
function gives us:

𝑔(𝑥) = 𝑒𝑥

1 + 𝑒𝑥

which is known as the sigmoid function (𝜎(𝑥)).



Let us see an example

sample_grades <- function(n){
x = rnorm(100000, 65, 15)
x = as.integer(x + 0.5)
x = replace(x, x > 100, 100)
return(sample(x, n, replace=TRUE))

}
sample_pass_fail <- function(x){

y = c()
for(i in x){

if(i>=70){y = c(y, 1)}
if(i<70 & i>=60){y = c(y, runif(1) > 0.05)}
if(i<60 & i>=50){y = c(y, runif(1) > 0.1)}
if(i<50 & i>40){y = c(y, runif(1) > .7)}
if(i<=40){y = c(y,0)}}

return(y)}
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Data Scatter Plot
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Let’s fit our model

We will use R’s glm function:
logit_model = glm(y ~ x,

data = student_data,
family = binomial(link="logit"))

coef(logit_model)

## (Intercept) x
## -6.6106912 0.1471761



Regression Plot
What do we notice, are there any outliers?
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Again how de we quantify outliers?
Quantifying outliers is a more difficult task in logistic regression,
but in our example we can still use residuals.
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Quantifying outliers?

This time we will formulate a method of our own:
▶ First we will remove all suspected outliers,
▶ We will then fit another logistic regression model using this

new data,
▶ We will make predictions in this new model using 𝑥 values of

our suspected points.
▶ Finally we will decide this point to be an outlier if our

prediction and the real value is greatly different.
outlier_removed <-student_data[1:213,]
logit_no_outlier = glm(y ~ x,

data = outlier_removed,
family = binomial(link="logit"))



Quantifying outliers?

As we can observe, there is great difference (> 0.95) between the
response and the observed value:
c(predict(logit_no_outlier, tibble(x=90), type="response"),

student_data[214,]$y)

## 1
## 0.9998324 0.0000000
c(predict(logit_no_outlier, tibble(x=30), type="response"),

student_data[215,]$y)

## 1
## 0.03252968 1.00000000



Final task: Anomalies

The problem of fitting a deep neural network can be viewed as a
regression problem:

𝑌 = 𝑓(𝑋) + 𝜖,
where 𝜖 is a random noise variable, (just like before!) and function
𝑓(𝑥) has the form:

𝑓(𝑥) = 𝑊𝐿𝜎(𝑊𝐿1
𝜎(𝑊𝐿−2 … 𝜎(𝑊1𝑥))),

where 𝜎(𝑥) can be non-linear functions (including our own
sigmoid), and 𝑊 ’s are matrices.
Our interest is in a particular type of deep neural network, called
the auto-encoder network, which has the form:

𝑋 = 𝑓(𝑋) + 𝜖.



Auto-encoder Networks
Of course, we may just pick 𝑓(𝑥) = 𝑥 as our function and have a
trivial result. In fact, if model is not designed carefully this result
will be a pitfall for our model.

Figure 3: (Dertat, 2017)



Auto-encoder Networks

The way to go around it is to use select an encoder layer that will
lose us some information, by using matrices with smaller
dimensions than our number of variables, and then try to regain
the lost information in the decoder layer.
From this point forward we will continue from python code.
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