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§1 Outlier Detection Using

Autoencoder Networks



What is an autoencoder?

• A kind of neural network, in which the dependent and

independent variables are same.

• Therefore, important to discourage to optimize for the trivial

solution using means such as regularization, randomness, and

dimension reduction.

• Among the most popular methods for outlier detection.

Figure 1: Structure of an autoencoder with three hidden layers.[4] 3



What is an autoencoder?

Definition 1.1 (Autoencoder Network [7])

An autoencoder network consisting of an encoder network φe and

a decoder network φd , with the corresponding parameters Θe and

Θd .
for z = φe (x; Θe) , x̂ = φd (z; Θd)

minimize
∑

x∈X L (x− φd (φe (x; Θe) ; Θd))

The optimum parameters for the network are

{Θ∗e ,Θ∗d} = arg min
Θe ,Θd

∑
x∈X
L (x− φd (φe (x; Θe) ; Θd)) .

If we choose the most commonly used L2 distance as our loss

function we have

‖x− φd (φe (x; Θ∗e) ; Θ∗d)‖2 . 4



Outlier Detection with PCA

• PCA and autoencoder share a lot of similarities, in fact when

the encoder is linear they learn the same space as PCA if

trained under L2 loss. [5]

• PCA is one of the classical methods used for outlier detection

in multivariate data. Most methods using PCA rely on outliers

having very litle correlation with the principal components.
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Outlier Detection Using Autoencoder Networks

Much like Principal Component Analysis, outlier detection using

Autoencoder networks is done by learning a lower dimensional

representation of the data. Then quantify outlier scores using

recovery error. Data points which have a higher recovery error

than a certain threshold are considered to be outliers.

O = {x ∈ X : ‖x − x̂‖ ≥ T}
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Algorithm 1: Outlier Detection with Autoencoders

Data: X , training data

Train the autoencoder using definition 1.1 for optimum

parameters Θ∗e and Θ∗d
Calculate reconstruction loss for each data point x ∈ X :

L(x) = ‖x− φd (φe (x; Θ∗e) ; Θ∗d)‖2 .

Select a threshold T based on the calculated losses

Observations above T are labelled as outliers

O = {x ∈ X : ‖x − x̂‖ ≥ T}.
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2-Short Comings of Autoencoders



Complexity

• Complexity of autoencoders allow them to generalize to

outliers just as well as the rest of the data, effectively

memorizing the data set.[6]

• This is also exacerbated by non-convexity, which makes it

difficult to determine when to stop the training process.
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Points of Leverage

• Similar to simple linear regression where outliers have a

potential to be points of leverage.

• Even at the beginning of the training process data points with

most errors tend to be outliers, [6] which makes them behave

as potential points of leverage due to their disproportionate

contribution to the model early on.
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Choice of Loss Function

• Loss function has multiple purposes during training, and

inference. As a result, scoring based on loss function

introduces some bias to the data.

• It also makes the model dependent upon the choice of loss

function.
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3- Role of Order Statistics



About Using Order Statistics

• Order statistics allow to treat data independent of its

distribution.

• Used in related fields such as extreme value theory.

• Our objective: In applications of autoencoders, often some a

priori is needed about the dataset to decide on a cut-off point

for outliers. Here we will go one step further and decide upon

a scoring function using order statistics and eliminate the need

for such assumptions.
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Motivation: A single outlier

Let X1,X2, . . . ,Xn be i.i.d. non-negative random variables, and let

X(1),X(2), . . . ,X(n−1),X(n)

be the corresponding order statistics. We can investigate whether

X(n) is an outlier by looking at
X(n)

X(n−1)
and comparing it to

X(i)

X(i−1)
,

for i < n.
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Definition of Outliers

Definition 3.1

Let X1,X2, . . . ,Xn be i.i.d. non-negative random variables with

cumulative distribution function F . We may further assume that

these are absolutely continuous, and call the common p.d.f. f . Let

X(1), . . . ,X(n) be the corresponding (increasing) order statistics.

We are to investigate the problem of outliers in a way that the

number of κ-outliers is defined via moving blocks as

ζn := n −min

i :
i∑

j=1

X(j) < κ

n∑
j=i+1

X(j)

 (1)
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Chosen Statistic

From our definition to quantities are important, the so-called

right-hand and left-hand sums:

• Tk,n ≡ Tk =
∑n

i=n−k+1 X(i), 1 ≤ k ≤ n

• Sm,n ≡ Sm =
∑m

i=1 X(i), 1 ≤ m ≤ n

Subsequently, putting the two together, we investigate probabilities

of the form P (Sm < κTn−m) where κ is fixed. We call the random

variable

R := P
(

Sm
Tn−m

≤ κ
)

as our outlier statistic.
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How does this statistic look?

We will look at Half-Normal, Half-Cauchy, and χ2 distributions.

We will take a sample of 1000000 from each distribution and plot

the results for each order statistic.
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Half-Normal Distribution
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Half-Normal Distribution
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Half-Cauchy Distribution
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Half-Cauchy Distribution
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χ2 Distribution
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χ2 distribution
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4- Selecting Threshold Kappa Value



Elbow Detection

• Ideally, we would like to define the cut-off point with respect

to the derivatives of our distribution function, which then can

be estimated from a given sample. However, there is no

established well-defined notion for the elbow region, which our

statistic produces.[1]

• We can leverage the algorithmic work done in elbow detection

to estimate the best elbow point.
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Elbow Detection

Many works in the kneecap or elbow detection literature is based

on the following pointwise definition of the curvature of a function.

Definition 4.1 (Curvature of a function [8])
For any continuous function f , there exists a standard closed-form

Kf (x) that defines the curvature of f at any point as a function of

its first and second derivative:

Kf (x) =
f ′′(x)

(1 + f ′(x)2)
3
2
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Kneedle Algorithm

• We will use the kneedle detection algorithm for estimating the

”elbow point” of our statistic [8].

• Kneedle algorithm uses the curvature definition 4.1 to find the

point of maximum curvature.

• It can work on discrete datasets and uses a sensitivity

parameter to single out potential elbows. We choose the

sensitivity parameter as 5.0 in our experiments.

24



Half-Normal Distribution
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Half-Cauchy Distribution
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χ2 distribution
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5- Order Statistic Augmented Loss



Motivation for using R-statistic in Autoencoders

• We have already mentioned that one particular weaknesses of

autoencoders is that due to the high complexity of the model,

it can generalize to outliers just as well as normal observations.

• It has also been reported that early in the optimization

process the gap between outliers and normal observations is

the most noticable.[6]

• We can use our statistic throughout the optimization

procedure and use the statistic to create a weighted some

during the calculation of the loss function. In this way we can

regularize the contribution of each observation to the loss by

its outlier score, and retain the initial distinction between

outliers and the rest of the data while optimizing for a model

with greater generalizability.
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Order statistic augmented loss function

• In order to make use of our statistic, we sample some

proportion of the data to use as a scoring system for the

entire data.

• We recalculate R statistic throughout the sample and also

calculate the κ threshold value.

• For each observation with greater loss than the κ

threshold, contribution to the loss is adjusted by the inverse

of its outlier score.
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Algorithm 2: Order Statistic Adjusted Loss function

Data: outlier sample := Sample a portion of the data

Intialize uniform loss weights;

for epoch in Total Epochs do

for batch in Data do
Calculate loss; Estimate loss weights using

outlier sample;

end

Calculate R-statistic for the outlier sample;

end
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6- Kappa Threshold Early Stopping



Early Stopping

• Autoencoders are not convex statistical models, as a result

their training takes longer and do not necessarily converge to

a global minumum. Early stopping is a method which can

determine the time to finish the training when the model is

sucessful enough. It works by monitoring a metric pertinent to

model sucess.

• Autoencoders are unsupervised methods, which limits the

options for choosing a reliable metric for early stopping. One

likely candiate is the loss function itself, [6] but the loss

function is also used for other algorithms that dynamically

change optimizer parameters such as learning rate.
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κ Threshold Value

• κ threshold value can be good metric for early stopping.

• Stability of κ shows that the model has stopped distinguishing

between outliers and the normal data.

• During training, we would expect κ to decrease as the loss is

decreasing and stop when the changes in the loss no longer

contribute to distinguishing outliers.
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Problems with using κ

• Not a summary statistic, but a pointwise estimate.

• Unlike most metrics used in early stopping κ is not consistent.
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What can we do?

• Block aggregation would help with inconsistencies and would

trim the sudden movements in the metric.

• Rather than testing for increases or decreases in the metric

like most early stopping algorithms, we can test for a stability

condition.
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Early Stopping algorithm using κ threshold

Figure 2: Unaltered and 3 epoch aggregated κ-threshold values during

the first 100 epochs of a training session.
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Algorithm 3: Stopping conditon for Early Stopping

Function check imporevement(κ epochs, block size,

early iteration limit):

if size(κ epochs) ≤ early iteration limit then
return continue

end

block κ = block sum(κ epochs, block size)

if block sum not increasing then
return stop

else
return continue

end
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Algorithm 4: Early Stopping algorithm using κ threshold

Data: Data := Training data

Data: outlier sample := Sample a portion of the Data

int early iteration limit

int block size

κ epochs = []

for epoch in Total Epochs do

for batch in Data do
Calculate loss

end

Calculate R-statistic for the outlier sample

Calculate κ-threshold for the epoch

κ epochs.append(κ-threshold)

check imporevement(κ epochs, block size,

early iteration limit)

end
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7- Experiments



Comparative studies

• As our algorithm is built on top of already established

methods in autoencoders, we can test in a comparative way.

• We will take a well-known benchmark dataset.

• Compare the results of autoencoders, autoencoders with order

statistic scoring method, finally we will add augmented loss

and early stopping.
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Dataset: MNIST

• MNIST is an image data set consisting of handwritten digits.

• Use sampling to create a outlier data set.

• We select 0 to represent normal instances

• Undersample from 4 for outliers. Final data has a 2% outlier

ratio.

Figure 3: Examples from MNIST data set.[3] 39



Experiment Details

• We use the following architecture used by [2]. Autoencoder

network with linear layers, the weights are respectively of

shapes (784, 256), (256, 32), (32, 256), (256, 784).

• Loss: MSE

• Optimizer: Adam with learning rate 10−3

• Batch size: 2991

• Epochs: 100
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Results

Algorithm F1 Confusion Matrix

Simple Autoencoder 0.639
5879 44

43 77

only with order statistic scoring 0.846
5923 0

32 88

with augmented loss and early stopping 0.857
5923 0

30 90
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